If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2=8
We move all terms to the left:
5y^2-(8)=0
a = 5; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·5·(-8)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*5}=\frac{0-4\sqrt{10}}{10} =-\frac{4\sqrt{10}}{10} =-\frac{2\sqrt{10}}{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*5}=\frac{0+4\sqrt{10}}{10} =\frac{4\sqrt{10}}{10} =\frac{2\sqrt{10}}{5} $
| 5+3/5b=7/10b= | | 0.7x-7=21-2x | | n-1/3+8=10 | | 1/x+1+15=8 | | 9z=9z, | | 72=-129-(3x) | | 5-7x=5x^2-4x+6 | | 9(5+4z)=24 | | 6m=150 | | 15x-6(-2+6)=13 | | 4c=1.3 | | 5x-30=2x+180 | | 3r^2=5-r | | 2p-14+2p=50 | | b/3=99 | | -b-9=-3+8+b | | 5/6x+2=3/8 | | 8-a=3+2(a-5) | | 2.3=5.5y | | ((x-1)x)/2+x=1485 | | 8a=32.8 | | -5x+5=7x-15 | | 32=-3(4d+7) | | 2.3y=82.5 | | 72=82-y | | 4w^2+3w=46 | | 7x+2=3x−7 | | 4(-1)+4y=24 | | 14+3y=12 | | 1.8x=-5.94 | | a/4=52 | | a/9+2=4 |